======================= General linear coupling ======================= General link couplings implement a general coupling between the source and target interface with linear elasticity and viscous damping properties. ---------- Definition ---------- Source and target interfaces can be chosen arbitrarily. ---------- Parameters ---------- General link couplings can be parametrised in two modes: `simple` and `advanced`, which are described in the following. ^^^^^^^^^^^^^ Advanced mode ^^^^^^^^^^^^^ In the advanced mode, the user is prompted to supply four stiffness matrices, :math:`\mathbf{K_{SS}}`, :math:`\mathbf{K_{ST}}`, :math:`\mathbf{K_{TS}}`, and :math:`\mathbf{K_{TT}}`. Following equation describes how the stiffness matrices define a coupling between the target and source interface, denoted by subscript :math:`{T}` and :math:`{S}`, respectively. .. math:: \begin{bmatrix}\mathbf{F_T} \\ \mathbf{F_S} \end{bmatrix} = \begin{bmatrix}\mathbf{K_{TT}} & \mathbf{K_{TS}} \\ \mathbf{K_{ST}} & \mathbf{K_{SS}}\end{bmatrix} \, \begin{bmatrix} \mathbf{y_T} \\ \mathbf{y_S} \end{bmatrix} A list of symbols is shown in following table. ======================= ================================= ============================================================================= Symbol Dimension Meaning ======================= ================================= ============================================================================= :math:`\mathbf{F_T}` :math:`\in\mathbb{R}^{6\times 1}` Load vector to target interface :math:`\mathbf{F_S}` :math:`\in\mathbb{R}^{6\times 1}` Load vector to target interface :math:`\mathbf{y_T}` :math:`\in\mathbb{R}^{6\times 1}` Displacement vector of target interface :math:`\mathbf{y_S}` :math:`\in\mathbb{R}^{6\times 1}` Displacement vector of source interface :math:`\mathbf{K_{TT}}` :math:`\in\mathbb{R}^{6\times 6}` Stiffness matrix coupling target displacement and target load :math:`\mathbf{K_{ST}}` :math:`\in\mathbb{R}^{6\times 6}` Stiffness matrix coupling target displacement and source load :math:`\mathbf{K_{TS}}` :math:`\in\mathbb{R}^{6\times 6}` Stiffness matrix coupling source displacement and target load :math:`\mathbf{K_{SS}}` :math:`\in\mathbb{R}^{6\times 6}` Stiffness matrix coupling source displacement and source load ======================= ================================= ============================================================================= The damping matrices are to be defined accordingly by substituting the displacement vectors with velocity vectors and by substituting the stiffness matrices by damping matrices, i.e.: .. math:: \begin{bmatrix}\mathbf{F_T} \\ \mathbf{F_S} \end{bmatrix} = \begin{bmatrix}\mathbf{D_{TT}} & \mathbf{D_{TS}} \\ \mathbf{D_{ST}} & \mathbf{D_{SS}}\end{bmatrix} \, \begin{bmatrix} \dot{\mathbf{y}}_\mathbf{T} \\ \dot{\mathbf{y}}_\mathbf{S} \end{bmatrix} ^^^^^^^^^^^ Simple mode ^^^^^^^^^^^ In the simple mode, a symmetric behaviour between target and source interface is implied. The four stiffness matrices are replaced by a single stiffness matrix :math:`\mathbf{K}` and applied to the coupling equation as follows: .. math:: \begin{bmatrix}\mathbf{F_T} \\ \mathbf{F_S} \end{bmatrix} = \begin{bmatrix}\mathbf{K} & -\mathbf{K} \\ -\mathbf{K} & \mathbf{K}\end{bmatrix} \, \begin{bmatrix} \mathbf{y_T} \\ \mathbf{y_S} \end{bmatrix}